Characterizing Variability and Multi-resolution Predictions of Virtual Sensors

نویسنده

  • ASHOK N. SRIVASTAVA
چکیده

In previous papers, we introduced the idea of a Virtual Sensor, which is a mathematical model trained to learn the potentially nonlinear relationships between spectra for a given image scene for the purpose of predicting values of a subset of those spectra when only partial measurements have been taken. Such models can be created for a variety of disciplines including the Earth and Space Sciences as well as engineering domains. These nonlinear relationships are induced by the physical characteristics of the image scene. In building a Virtual Sensor a key question that arises is that of characterizing the stability of the model as the underlying scene changes. For example, the spectral relationships could change for a given physical location, due to seasonal weather conditions. This paper, based on a talk given at the American Geophysical Union (2005), discusses the stability of predictions through time and also demonstrates the use of a Virtual Sensor in making multi-resolution predictions. In this scenario, a model is trained to learn the nonlinear relationships between spectra at a low resolution in order to predict the spectra at a high resolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Seasonality and Multi-resolution Predictions of Virtual Sensors for Remote Sensing Applications

Abstract. In previous papers, we introduced the idea of a Virtual Sensor, which is a mathematical model trained to learn the potentially nonlinear relationships between spectra for a given image scene for the purpose of predicting values of a subset of those spectra when only partial measurements have been taken. These nonlinear relationships are induced by the physical characteristics of the i...

متن کامل

A Multi-objective Optimization Model for Dynamic Virtual Cellular Manufacturing Systems

Companies and firms, nowadays, due to mounting competition and product diversity, seek to apply virtual cellular manufacturing systems to reduce production costs and improve quality of the products. In addition, as a result of rapid advancement of technology and the reduction of product life cycle, production systems have turned towards dynamic production environments. Dynamic cellular manufact...

متن کامل

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

Target Tracking Based on Virtual Grid in Wireless Sensor Networks

One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...

متن کامل

Fusion of LST products of ASTER and MODIS Sensors Using STDFA Model

Land Surface Temperature (LST) is one of the most important physical and climatological  crucial yet variable parameter in environmental phenomena studies such as, soil moisture conditions, urban heat island, vegetation health, fire risk for forest areas and heats effects on human’s health. These studies need to land surface temperature with high spatial and temporal resolution. Remote sensing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006